Sensor integration tutorial
Citisim
Smart City 3D Simulation and Monitoring Platform

Sensor integration tutorial

ITEA3 - Project Citisim

Document Properties

Edited by: Félix Jesus Villanueva Molina (UCLM)

Authors Citisim Partners
Date 09/12/2019
Visiblity Public

Status Final version

Sensor integration tutorial

History of Changes

Release Date Author, Organization Changes

1.0 9/12/2019 Abalia Document

Sensor integration tutorial

List of Figures

Figure 1 Wibee Sensor and its dashboard in Wibeee cloud ...
Figure 2 Citisim Dashboard............oooo

file:///C:/Users/Felix.Villanueva/Dropbox%20(ARCOresearch%20-%20UCLM)/ARCOresearch%20-%20Work/CITISIM-ITEA3/Entregables/wp2/D2.2/Sensor-integration-tutorial.docx%23_Toc26806444

Sensor integration tutorial

Table of Contents

1. Introduction

2. Example of Wibeee sensor integration.

Sensor integration tutorial

Introduction

This document presents how to integrate any sensor in Citisim, as example, we show the integration of
Wibeee sensors

Citisim - Dashboard - o x
Citisim Dashboard
Services & Sensors
G cisim Total number of Events 469
[o] i
10 Services

D LibeliumITS1

2000 10,30l ax:on a0
1 Service

¥ Week Month Al

D nuc-itsi
[on | Dashboard DS

citisim

IceStorm
citisim

PropertyService
citisim

1 Service

Dashboard IceSto...

citisim

LibeliumNotifier

LibeliumI TSI

BidirlceStorm

citisim

WiringService

citisim

Dashboard IceGri.. KinectPersonTrac...
citisim nucits

-- H H
g

TwilightSensor: IT...

PersistentService
itisim citis

WG Temperature: ...
citisim

Sensor Information

Source Status Topic Iface #Events Events
1 17510010 o Temperature SmartObject:Analogsink 10245
2 <unknowns ® PersonTrackerTopic <unknown> 860 N/A
3 <unknown> [] PersonMovements <unknown> 12 N/A
4 <unknown> [] OccupancyChanges <unknown> 12 N7A
5 17510026 [] Temperature SmartObject:Analogsink 852
6 17510021 o PluviometerCurrent SmartObject:Analogsink 858
7 17510027 [] Humidity SmartObject:Analogsink 860
8 17510022 ® PluviometerLastHour SmartObject:Analogsink 857
9 17510023 [] Battery SmartObject:Analogsink 832
10 17510024 [J Anemometer SmartObject:Analogsink 856
[ArcoResearch © 2018 | v0.20180606 | Last sync: 7/10/2018, 1:40:14 PM =

loT layer in Citisim has been developed with the current business lIoT models in mind, so we can find
three cases when we need to meter/control a physical magnitude in a Citisim instance:

1. We buy a programable sensor/actuator. In this case we can native integrate Citisim API calls
from the sensor directly.

2. We buy a non-programable sensor/actuator which it is using a standard/open protocol (e.g.
MQTT). In this case we need to run an adapter (e.g. MQTT-Citisim adapter) and to configure it

properly.

3. We buy a non-programable sensor/actuator which sends all the information to a fixed, non-
configurable, cloud service. We are going to deal in this lab with this case.

Sensor integration tutorial

IM

Example of Wibeee sensor integration.

Effectively, in last years it is a usual practice in a lot of hardware companies to sell you devices and
then pay monthly for accessing to the data of your devices. For the final user and it depends on
the final application, this approach would be a good approach due they don't have to be worried
about dashboard issues/maintenance. However, for ingesting data platforms as Citisim platform
is, this is the worst scenario.

Under this approach and from a technical point of view, there are only two options:

Some companies provide you with an API (usually an HTTP REST API) to access to the data,
directly from the sensor and/or against the cloud.

To make web scraping of the dashboard, we highly recommend you to avoid this type of
hardware in case you are buying new sensors/actuators. If you are dealing with legacy
systems be aware about legal issues to ingest data using web scrapping.

In the first approach where you have an HTTP REST API to access the data, the best option is to develop

something similar to an adapter for Citisim from that technology.

Prere—

ITS| Citisim O amepone a8

82,88
136194
1.284,68

300,00

Figure 1 Wibee Sensor and its dashboard in Wibeee cloud

Let's see step by step how to deal with this scenario using wibeee company energy sensors. The
company Wibeee has catalog of high quality energy sensors to analyze energy consumption from a
smart mobile app.

The steps you have to follow are:

1.

2.
3.
4

To buy the sensors from its web.

To deploy them in the electrical distribution panel,

To configure the Wibeee device to connect to your wifi

Finally you can log-in in its cloud service in order to see your data
(http://wibeee.circutor.com/wibeee/) and/or log-in with app from the mobile phone.
Alternatively you can download periodically a xml file with the data of your sensor, we choose
this approach and we are going to explain how to inject the information collected by this (or
anyother way as HTTP REST API as we mention above) in a Citisim instance.

The first part, download periodically the xml file with the desired wibeee information can be done with
any python library, we are not going in depth in this part since it is specific of each sensor. The

reason why we chosen wibeee is because you can access directly to the sensor to get the
information directly from the sensor so you don’t need to access to the cloud.

http://wibeee.circutor.com/wibeee/

Sensor integration tutorial

IM

In a config file (e.g publisher.config) we need to stablish the parameters to be connected to a Citisim
instance and to the sensors:

Ice.Default.Locator = IceGrid/Locator -t:tcp -h <host> -p 5061

LibCitisim.UseBiDir = True #if we are behind a gateway

Wibeee.url.citisim = http:/X. X. X. X/services/user/values.xml?id=ITS1%20Citisim
Wibeee.url.corridor = http://X. X. X . X/services/user/values.xml?id=ITS1%20Pasillo
Source.ids.citisim = {"pact":"0A06175100000080", "papt":"0A06175100000081",
"fpott™:"0A06175100000082", "irmst":"0A06175100000083", "eact™:"0A06175100000084",
"vrmst":"0A06175100000085"}

6. Source.ids.corridor = {"pact":"0A06175100000086", "papt":"0A06175100000087",
"fpott™:"0A06175100000088", "irmst":"0A06175100000089", "eact™:"0A06175100000090",
"vrmst":"0A06175100000091"}

aprwDdPRE

As you can appreciate, we define the endpoint of Citisim instance where we are going to inject the
information (line 1), then we define bidir property just in case we need to through a router/gateway
with NAT/PAT enabled (line 2) and after defining URLs of the Wibeee sensors (lines 3 and 4), we
associate valid Citisim IDs to each physical magnitude metered (lines 5 and 6).

After this config configuration we can use a class Publisher as template:
class Publisher:
def __init__(self, vars, meta):
self.vars = vars
self.meta = meta

def set_ids(self, ids):
self.ids = {key: ast.literal_eval(values)
if values else {} for key, values in ids.items()}
self.wib_publishers = {key: {} for key in self.ids.keys()}
self.create_publishers()

def set_broker(self, broker):
self.broker = broker

def create_publishers(self):

assert self.wib_publishers, "WARNING: no publishers defined!"

for key in self.ids.keys():
self.wib_publishers[key][self.vars[0]] = self.broker.get_publisher(
source=self.ids[key][self.vars[0]], transducer_type="PowerSensor", meta=self.meta)
self.wib_publishers[key][self.vars[1]] = self.broker.get_publisher(
source=self.ids[key][self.vars[1]], transducer_type="PowerSensor", meta=self.meta)
self.wib_publishers[key][self.vars[2]] = self.broker.get_publisher(
source=self.ids[key][self.vars[2]], transducer_type="PowerSensor", meta=self.meta)
self.wib_publishers[key][self.vars[3]] = self.broker.get_publisher(
source=self.ids[key][self.vars[3]], transducer_type="CurrentSensor", meta=self.meta)
self.wib_publishers[key][self.vars[4]] = self.broker.get_publisher(
source=self.ids[key][self.vars[4]], transducer_type="EnergySensor", meta=self.meta)
self.wib_publishers[key][self.vars[5]] = self.broker.get_publisher(

Sensor integration tutorial

IM

source=self.ids[key][self.vars[5]], transducer_type="VoltageSensor", meta=self.meta)

def publish(self, values):
for key in values.keys():
for var in valueslkey].keys():
self.wib_publishers[key][var].publish(values[key][var])
logging.info("{} [{} {}] {}"-format(
datetime.now(), key, var, values[key][var]))
logging.info(")

This template takes basically the config data from the config file and creates a publisher by each defined
sensor id (create_publishers method). The broker.get_publisher is a method provided by libcitisim which
creates a publisher object of the type that you indicate in fransducter_type (which is associated to a
specific interface). There are up to 40 different types of trasnducter defined.

After this creation of publisher, each time we want to generate an event in Citisim associated to a
physical magnitude we call to publish methdo which publish an event for each magnitude. Wibeee
sensors meter several magnitudes (energy, current, power and voltage) so each one of that magnitudes
are virtually associated to a sensor in Citisim.

] Source Status Topic Hace # Events
177 0A06175100000041 L] ApparentPower SmartObject-Analogsink 1618271
179 L] ActivePower SmartObject-Analogsink

180 L] ApparentPower SmartObject Analogsink

181 L] Current SmartObject-Analogsink

182 (] Vohage SmartObject-Analogsink

183 L] PowerFactor S5 ect Analagsink

184 L] Current E bject Analogsink

186 (] actor SmartObject-Analogsink

188 L] Voltage SmartObject Analogsink

200 L] ActivePower SmartObject Analogsink 1618194
457 0A06175100000011 ® 0ADS175100000011.private SmartObject-Digitalsink 476
459 0A06175100000051 L] ApparentPower SmartObject Analogsink 63944
480 0AO6175100000049 L] voltage SmartObject-Analagsink 63943
461 (] Current SmartObject-Analogsink 63031
462 ® PowerFactor SmartObject-Analogsink 63948
163 L] ActivePower SmartObject Analagsink 63937
505 (] Twilight SmartObject-Digitalsink 424
533 ® OADSFFODO000D00Z private SmartObject-Analogsink 749
534 L] OADEFFODO000DN0A private SmartObject Analagsink 579
535 (] Energy 79
536 ® Energy 52
537 L] OADSFFODOOB0D00T private

538 (] OADSFFOD0000000 private

539 0AQGFFO0D0000003 e Energy SmartObject-Analogsink nez
540 BAOBFFO0DO000D02 L] Energy SmartObject-Analogsink Tas
Showing 1 10 25 of 58 entries

Figure 2 Citisim Dashboard
With this class, we only have to connect with the Citisim instance:
self.broker = Broker(ic=self.communicator())

To indicate which variables are being metered and the properties (e.g sensor position):
vars = ["pact”, "papt", "fpott", "irmst", "eact", "vrmst"]

meta = {"latitude": "38.997947",

"longitude™: "-3.919902",

"altitude": "639.10",

"place": "ARCO Lab ITSI"}

Sensor integration tutorial

IM

And to enter in a loop of reading Wibeee sensor and generating the events associated to that update:
while(True):

values = self.requester.get_average measures(UPDATE_TIME)
self.publisher.publish(values)

The full code can be checked in the wibee-energy-publisher repository of the project.

