

Sensor integration tutorial
Citisim

Smart City 3D Simulation and Monitoring Platform

Sensor integration tutorial

ITEA3 – Project Citisim

Document Properties

Edited by: Félix Jesús Villanueva Molina (UCLM)

Authors Citisim Partners

Date 09/12/2019

Visiblity Public

Status Final version

Sensor integration tutorial

History of Changes

Release Date Author, Organization Changes

1.0 9/12/2019 Abalia Document

Sensor integration tutorial

List of Figures

Figure 1 Wibee Sensor and its dashboard in Wibeee cloud ...7

Figure 2 Citisim Dashboard ...8

file:///C:/Users/Felix.Villanueva/Dropbox%20(ARCOresearch%20-%20UCLM)/ARCOresearch%20-%20Work/CITISIM-ITEA3/Entregables/wp2/D2.2/Sensor-integration-tutorial.docx%23_Toc26806444

Sensor integration tutorial

Table of Contents

1. Introduction 6

2. Example of Wibeee sensor integration. 7

Sensor integration tutorial

Introduction

This document presents how to integrate any sensor in Citisim, as example, we show the integration of

Wibeee sensors

IoT layer in Citisim has been developed with the current business IoT models in mind, so we can find

three cases when we need to meter/control a physical magnitude in a Citisim instance:

1. We buy a programable sensor/actuator. In this case we can native integrate Citisim API calls

from the sensor directly.

2. We buy a non-programable sensor/actuator which it is using a standard/open protocol (e.g.

MQTT). In this case we need to run an adapter (e.g. MQTT-Citisim adapter) and to configure it

properly.

3. We buy a non-programable sensor/actuator which sends all the information to a fixed, non-

configurable, cloud service. We are going to deal in this lab with this case.

Sensor integration tutorial

 Example of Wibeee sensor integration.

Effectively, in last years it is a usual practice in a lot of hardware companies to sell you devices and

then pay monthly for accessing to the data of your devices. For the final user and it depends on

the final application, this approach would be a good approach due they don't have to be worried

about dashboard issues/maintenance. However, for ingesting data platforms as Citisim platform

is, this is the worst scenario.

Under this approach and from a technical point of view, there are only two options:

• Some companies provide you with an API (usually an HTTP REST API) to access to the data,

directly from the sensor and/or against the cloud.

• To make web scraping of the dashboard, we highly recommend you to avoid this type of

hardware in case you are buying new sensors/actuators. If you are dealing with legacy

systems be aware about legal issues to ingest data using web scrapping.

In the first approach where you have an HTTP REST API to access the data, the best option is to develop

something similar to an adapter for Citisim from that technology.

Figure 1 Wibee Sensor and its dashboard in Wibeee cloud

Let’s see step by step how to deal with this scenario using wibeee company energy sensors. The

company Wibeee has catalog of high quality energy sensors to analyze energy consumption from a

smart mobile app.

The steps you have to follow are:

1. To buy the sensors from its web.

2. To deploy them in the electrical distribution panel,

3. To configure the Wibeee device to connect to your wifi

4. Finally you can log-in in its cloud service in order to see your data

(http://wibeee.circutor.com/wibeee/) and/or log-in with app from the mobile phone.

5. Alternatively you can download periodically a xml file with the data of your sensor, we choose

this approach and we are going to explain how to inject the information collected by this (or

anyother way as HTTP REST API as we mention above) in a Citisim instance.

The first part, download periodically the xml file with the desired wibeee information can be done with

any python library, we are not going in depth in this part since it is specific of each sensor. The

reason why we chosen wibeee is because you can access directly to the sensor to get the

information directly from the sensor so you don’t need to access to the cloud.

http://wibeee.circutor.com/wibeee/

Sensor integration tutorial

In a config file (e.g publisher.config) we need to stablish the parameters to be connected to a Citisim

instance and to the sensors:

1. Ice.Default.Locator = IceGrid/Locator -t:tcp -h <host> -p 5061

2. LibCitisim.UseBiDir = True #if we are behind a gateway

3. Wibeee.url.citisim = http://X.X.X.X/services/user/values.xml?id=ITSI%20Citisim

4. Wibeee.url.corridor = http://X.X.X.X/services/user/values.xml?id=ITSI%20Pasillo

5. Source.ids.citisim = {"pact":"0A06175100000080", "papt":"0A06175100000081",

"fpott":"0A06175100000082", "irmst":"0A06175100000083", "eact":"0A06175100000084",

"vrmst":"0A06175100000085"}

6. Source.ids.corridor = {"pact":"0A06175100000086", "papt":"0A06175100000087",

"fpott":"0A06175100000088", "irmst":"0A06175100000089", "eact":"0A06175100000090",

"vrmst":"0A06175100000091"}

As you can appreciate, we define the endpoint of Citisim instance where we are going to inject the

information (line 1), then we define bidir property just in case we need to through a router/gateway

with NAT/PAT enabled (line 2) and after defining URLs of the Wibeee sensors (lines 3 and 4), we

associate valid Citisim IDs to each physical magnitude metered (lines 5 and 6).

After this config configuration we can use a class Publisher as template:

class Publisher:

 def __init__(self, vars, meta):

 self.vars = vars

 self.meta = meta

 def set_ids(self, ids):

 self.ids = {key: ast.literal_eval(values)

 if values else {} for key, values in ids.items()}

 self.wib_publishers = {key: {} for key in self.ids.keys()}

 self.create_publishers()

 def set_broker(self, broker):

 self.broker = broker

 def create_publishers(self):

 assert self.wib_publishers, "WARNING: no publishers defined!"

 for key in self.ids.keys():

 self.wib_publishers[key][self.vars[0]] = self.broker.get_publisher(

 source=self.ids[key][self.vars[0]], transducer_type="PowerSensor", meta=self.meta)

 self.wib_publishers[key][self.vars[1]] = self.broker.get_publisher(

 source=self.ids[key][self.vars[1]], transducer_type="PowerSensor", meta=self.meta)

 self.wib_publishers[key][self.vars[2]] = self.broker.get_publisher(

 source=self.ids[key][self.vars[2]], transducer_type="PowerSensor", meta=self.meta)

 self.wib_publishers[key][self.vars[3]] = self.broker.get_publisher(

 source=self.ids[key][self.vars[3]], transducer_type="CurrentSensor", meta=self.meta)

 self.wib_publishers[key][self.vars[4]] = self.broker.get_publisher(

 source=self.ids[key][self.vars[4]], transducer_type="EnergySensor", meta=self.meta)

 self.wib_publishers[key][self.vars[5]] = self.broker.get_publisher(

Sensor integration tutorial

 source=self.ids[key][self.vars[5]], transducer_type="VoltageSensor", meta=self.meta)

 def publish(self, values):

 for key in values.keys():

 for var in values[key].keys():

 self.wib_publishers[key][var].publish(values[key][var])

 logging.info("{} [{} {}] {}".format(

 datetime.now(), key, var, values[key][var]))

 logging.info("")

This template takes basically the config data from the config file and creates a publisher by each defined

sensor id (create_publishers method). The broker.get_publisher is a method provided by libcitisim which

creates a publisher object of the type that you indicate in transducter_type (which is associated to a

specific interface). There are up to 40 different types of trasnducter defined.

After this creation of publisher, each time we want to generate an event in Citisim associated to a

physical magnitude we call to publish methdo which publish an event for each magnitude. Wibeee

sensors meter several magnitudes (energy, current, power and voltage) so each one of that magnitudes

are virtually associated to a sensor in Citisim.

With this class, we only have to connect with the Citisim instance:

self.broker = Broker(ic=self.communicator())

To indicate which variables are being metered and the properties (e.g sensor position):

vars = ["pact", "papt", "fpott", "irmst", "eact", "vrmst"]

meta = {"latitude": "38.997947",

"longitude": "-3.919902",

"altitude": "639.10",

"place": "ARCO Lab ITSI"}

Figure 2 Citisim Dashboard

Sensor integration tutorial

And to enter in a loop of reading Wibeee sensor and generating the events associated to that update:

while(True):

 values = self.requester.get_average_measures(UPDATE_TIME)

 self.publisher.publish(values)

The full code can be checked in the wibee-energy-publisher repository of the project.

